
Digital Object Identifier (DOI) 10.1007/s100529900001
Eur. Phys. J. C 9, 389–408 (1999) THE EUROPEAN

PHYSICAL JOURNAL C
c© Springer-Verlag 1999

Neutrino textures in light of Super-Kamiokande data
and a realistic string model

J. Ellis1, G.K. Leontaris1,2, S. Lola1, D.V. Nanopoulos3,4,5

1 Theory Division, CERN, CH-1211 Geneva 23, Switzerland
2 Theoretical Physics Division, Ioannina University, GR-45110 Ioannina, Greece
3 Center for Theoretical Physics, Department of Physics, Texas A&M University, College Station, TX 77843 4242, USA
4 Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Mitchell Campus, Woodlands, TX 77381,

USA
5 Academy of Athens, Chair of Theoretical Physics, Division of Natural Sciences, 28 Panepistimiou Ave., Athens GR-10679,

Greece

Received: 6 November 1998 / Published online: 18 June 1999

Abstract. Motivated by the Super-Kamiokande atmospheric neutrino data, we discuss possible textures for
Majorana and Dirac neutrino masses within the see-saw framework. There are two main purposes of this
paper: first, to gain intuition into this area from a purely phenomenological analysis, and second, to explore
to what extent it may be realized in a specific model. We comment initially on the simplified two-generation
case, emphasizing that large mixing is not incompatible with a large hierarchy of mass eigenvalues. We also
emphasize that renormalization-group effects may amplify neutrino mixing, and we present semi-analytic
expressions for estimating this amplification. Several examples are then given of three-family neutrino mass
textures, which may also accommodate the persistent solar neutrino deficit, with different assumptions for
the neutrino Dirac mass matrices. We comment on a few features of neutrino mass textures arising in
models with a U(1) flavour symmetry. Finally, we discuss the possible pattern of neutrino masses in a
“realistic” flipped SU(5) model derived from string theory, illustrating how a desirable pattern of mixing
may emerge. Both small- or large-angle MSW solutions are possible, while a hierarchy of neutrino masses
appears more natural than near-degeneracy. This model contains some unanticipated features that may be
relevant in other models also: The neutrino Dirac matrices may not be related closely to the quark mass
matrices, and the heavy Majorana states may include extra gauge-singlet fields.

1 Introduction

There have recently been reports from the Super-Kamio-
kande Collaboration [1] and others [2] indicating that the
atmospheric neutrino deficit is due to neutrino oscillations.
The data on electron events with visible energy greater
than 200 MeV are very consistent with standard model
expectations. On the other hand, the number of events
with muons is about half of the expected number, and
the deficit becomes more acute for larger values of L/E,
indicating that neutrino oscillations dilute the abundance
of atmospheric νµ. The possibility that νµ → νe oscilla-
tions dominate is disfavoured by both Super-Kamiokande
[1] and CHOOZ data [3]. A fit to νµ → ντ oscillations,
with ∆m2 = 5 − 50 × 10−4 eV2 and θ ∼ π/4 matches the
data very well, but an admixture of νµ → νe oscillations
cannot be excluded.

One intriguing feature of this scenario is the large mix-
ing angle that is required, and the question of how one
could achieve this in theoretically motivated models arises.
Large mixing angles in the neutrino sector do arise natu-
rally in a sub-class of GUT models with flavour symme-

tries, as in [4], where they were used to explain what was
then only an “atmospheric neutrino anomaly” [5]. Many
models with a single U(1) symmetry predict small mix-
ings [6], principally because of the constrained form of the
Dirac mass matrices. However, this is not a generic feature,
and textures with large νµ → ντ mixing have also been
presented in [7]. Moreover, string-derived models may well
have a richer structure, with three or four U(1) symme-
tries.

However, models where the large neutrino mixing arises
from the Dirac mass matrix may have a problem with
quark masses. In many GUTs, for example, SO(10), the
neutrinos and up-type quarks couple to the same Higgs
and are in the same multiplets, so their couplings arise
from identical GUT terms1. Thus, in these cases one would
simultaneously generate large mixing in the u-quark sec-
tor. Then, in order to obtain small mixing in VCKM , one
needs to invoke some cancellation with mixing in the d-
quark sector. One way to overcome these difficulties may

1 Fermion mass hierarchies in this class of models have been
discussed in [8].
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be to invoke additional symmetries, like those that arise
in string-derived GUT models. In realistic models, which
also give the correct pattern of quark masses and mixings,
one can hope to generate large neutrino mixing, because of
the combined form of the Dirac and heavy Majorana mass
matrices, even in cases where the off-diagonal elements of
the Dirac mass matrix are not themselves large. A study
of phenomenologically viable heavy Majorana mass matri-
ces that lead to a large mixing angle has previously been
presented, for different choices of the Dirac mass matrix,
in [9] 2.

Realistic string models have been constructed in the
free-fermionic superstring formulation, with encouraging
results. Recently, due to better understanding of non-per-
turbative string effects, which may remove the previous
apparent discrepancy between the string and gauge uni-
fication scales, interest in string-motivated GUT symme-
tries has been revived. In this framework, we have looked
recently [13] at the predictions for quark masses in the
context of a flipped SU(5) × U(1) model [14], which is
one of the three-generation superstring models derived in
the free-fermion formulation. The extension to lepton and
neutrino masses leads to various ambiguities, in part be-
cause the original assignments [14] of the lepton fields are
not unique. In addition, the model contains many singlet
fields, and which of them develop non-zero vacuum expec-
tation values (vevs) depends on the choice of flat direction.

GUT and string models form the motivation for the
analysis contained in this paper. However, before address-
ing these models, we first perform a more general phe-
nomenological analysis of neutrino masses and mixing,
seeking to understand the general pattern evident in the
recent data [1,2]. Equipped with this intuition, we then ex-
plore the possibilities for accommodating the data within
specific models in which the neutrino Dirac mass matrix
is consistent with the charged-lepton and quark mass ma-
trices that we derived in [13]. Some novel features ap-
pear. The flipped SU(5) avoids the tight relation between
u-quark and neutrino Dirac mass matrices, and gauge-
singlet fields may be candidates for νR fields [15]. Within
this model, we prefer a hierarchy of neutrino masses, with
which we may obtain either the small- or the large-angle
MSW solution to the solar neutrino problem3.

The layout of this paper is as follows. After a brief
review in Sect. 2 of the data and their implications, in
Sect. 3 we analyze possible forms of the Dirac and heavy
Majorana mass matrices in a simplified 2 × 2 model. Re-
normalization-group effects in this model are studied in
Sect. 4. Then, in Sect. 5, we explore certain aspects of
the multi-dimensional parameter space of 3 × 3 models.
In Sect. 6 we comment on models with U(1) flavour sym-
metries. In Sect. 7, we examine neutrino mass matrices
in the string model of [13] (which is reviewed in the Ap-
pendix). Finally, in Sect. 8, we summarize our conclusions,

2 Other textures with large mixing angles have also been
proposed [10–12].

3 In our work, we do not discuss alternative possibilities for
explaining the atmospheric neutrino deficit, such as neutrino
decays [16] or flavour-changing interactions [17].

and point to features that may be generalizable to other
models.

2 Neutrino data and their implications

The atmospheric neutrino data reported by Super-Kamio-
kande and other experiments [1,2] are explicable by

(a) νµ → ντ oscillations with

δm2
νµντ ≈ (10−2 to 10−3) eV2 (1)

sin2 2θµτ ≥ 0.8. (2)

A description in terms of νµ → νe oscillations alone does
not fit the data as well, and in any case is largely excluded
by the CHOOZ experiment [3]. However, there may be
some admixture of νµ → νe oscillations (see, e.g., the last
paper in [10]).

The solar neutrino data may be explicable in terms of
νe → να oscillations with either (b1) a small-angle MSW
solution [18],

δm2
νeνα ≈ (3 − 10) × 10−6 eV2 (3)

sin2 2θαe ≈ (0.4 − 1.3) × 10−2 (4)

(b2) a large-angle MSW solution,

δm2
νeνα ≈ (1 − 20) × 10−5 eV2 (5)

sin2 2θαe ≈ (0.5 − 0.99) (6)

or (b3) vacuum oscillations,

δm2
νeνα ≈ (0.5 − 1.1) × 10−10 eV2 (7)

sin2 2θαe ≥ 0.67 (8)

where α is µ or τ .
One may also consider the possibility (c) that there

is a significant neutrino contribution to the mass den-
sity of the universe in the form of hot dark matter, which
would require

∑
imνi ≥ 3 eV. If this was to be the case,

the atmospheric and solar neutrino data would enforce
mνe ≈ mνµ ≈ mντ ≥ 1 eV. This would be only marginally
compatible with (ββ)0ν limits, which might require some
cancellations in the event of large mixing, as required in
scenarios (b2, b3) above. Motivation for a significant hot
dark matter component was provided some years ago by
the need for some epicycle in the standard cold dark mat-
ter model for structure formation, so that the COBE data
on fluctuations in the cosmic microwave background radia-
tion could be reconciled with other astrophysical structure
data [19]. Alternative epicycles included a tilted spectrum
of primordial fluctuations and a cosmological constant. In
recent years, the case for mixed hot and cold dark matter
has not been strengthened, while recent data on large red-
shift supernovae favour a non-zero cosmological constant
[20].
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Under these circumstances, we consider abandoning
the cosmological requirement (c). In this case, the atmo-
spheric and solar neutrino conditions (a,b) no longer im-
pose near-degeneracy on any pair of neutrinos, though this
remains a theoretical possibility.

Thus, one is led to consider the possibility of a hierar-
chy of neutrino masses, mν3 � mν2 ,mν1 , leaving open for
the moment the possibility of a second hierarchy, mν2 �
mν1 . In either case, condition (a) requires mν3 ≈ (10−1

to 10−1 1
2 ) eV, and, if there is a second hierarchy4, mν1 �

mν2 ≈ (10−2 to 10−3) eV. One may then wonder about
the magnitude of the mixing angles. It is well known that
large mixing is generic if off-diagonal entries in the mass
matrix are larger than differences between diagonal en-
tries. The question then arises: Can one reverse this ar-
gument? In other words, to what extent is a large mixing
angle incompatible with a hierarchy of mass eigenstates
mν3 � mν2? We study this question, using first a simple
two-generation model. Later we extend our analysis to the
three-generation case, and then examine whether the nec-
essary mass matrices have any chance of arising in models
with popular types of flavour symmetries, or in a model
derived from string theory.

3 Mixing and mass hierarchies

The light-neutrino mass matrix may be written as

meff = mD
ν · (MνR)−1 ·mDT

ν , (9)

where mD
ν is the Dirac neutrino mass matrix and MνR the

heavy Majorana neutrino mass matrix. We initially con-
sider generic forms for mD

ν and MνR , keeping in mind that
many unified models with an SO(10) structure give the re-
lation mD

ν ∼ mu. To identify which mass patterns fulfill
the phenomenological requirements outlined in the previ-
ous section, we consider an effective light-neutrino mass
matrix with strong mixing. We then investigate which
form of the heavy Majorana mass matrix is compatible
with a specific form of the neutrino Dirac mass matrix5.

3.1 Maximal mixing and hierarchical masses
in the two-generation case

For simplicity, we concentrate initially on the 2 × 2 mass
submatrix for the second and third generations. According
to (9), this may be written in the form

MνR = mDT

ν ·m−1
eff ·mD

ν , (10)
4 We note that a sterile neutrino with ∆m2

1,4 ∼ 1eV2 is some-
times postulated in order to accommodate the data from short-
baseline neutrino experiments. Such a possibility may be real-
ized [21] within some variants of the models we are examining,
e.g., the flipped SU(5), for they include additional light neu-
tral singlets as well as the three ordinary neutrinos. However,
we do not discuss such scenarios here.

5 A classification of the possible forms of the heavy Majo-
rana mass matrices leading to large mixing has been given
previously, for various forms of the Dirac mass matrices, in [9].

with

m−1 diag
eff =

(
1
m2

0
0 1

m3

)
: m−1

eff = Vνm
−1 diag
eff V T

ν (11)

where Vν is the neutrino mixing matrix. We are going to
explore large (23) mixing. In most cases, there are small
differences between mixing at the GUT scale and mix-
ing at low energies, so we first focus on the possibility
of obtaining directly from the theory of high scales the
large mixing angle needed to resolve the atmospheric neu-
trino problem, discussing later possible enhancement by
renormalization-group effects at lower scales. Parametriz-
ing the 2 × 2 mixing matrix by

Vν =

(
c23 −s23
s23 c23,

)
(12)

we see from (11) that m−1
eff has the form

m−1
eff =

1
m2m3

(
c223m3 + s223m2 c23s23(m3 −m2)
c23s23(m3 −m2) c223m2 + s223m3

)

≡ d

(
b/d 1
1 c/d

)
. (13)

Identification of the entries gives

sin 2θ23 = 2d
m2m3

m3 −m2
, (14)

where the mass eigenvalues m2,3 are given by

m2,3 =
2

b+ c±√(b− c)2 + 4d2
, (15)

and θ23 is the νµ → ντ mixing angle. It is apparent from
(15) that the two eigenmasses have the same sign for bc >
d2, whereas they have opposite signs if bc < d2.

Substituting (15) into (14), we find that

sin2 2θ23 =
4d2

(b− c)2 + 4d2 . (16)

It is clear that maximal mixing, sin2 2θ23 ≈ 1, θ23 ≈ π/4,
is obtained whenever |b− c| � |d|. As seen in (15), the ra-
tio of the two mass eigenvalues then depends on the ratio
(b+ c)/d, and there is no particular reason to expect their
near-degeneracy, though this would occur if |b, c| � |d|.
Figures 1 and 2 show that non-zero but similar values of b
and c can lead to large mixing with lifting of the mass de-
generacy. In these figures, we plot the mixing angle and the
ratio of the eigenvalues in terms of c/d, for b/d = 0, 0.25
and 0.5, respectively. The smaller values of b/d correspond
to the darker lines.

As we see from these figures, the mixing angle, sin2 2θ23
≥ 0.8, can be sufficiently large to yield a significant range
of values for b and c. In particular, if the diagonal entries
are of the same order of magnitude as the off-diagonal
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Fig. 1. The 2 × 2 mixing angle as a function of the ratio c/d
in (13), for selected values of b/d
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Fig. 2. The mass ratio m3/m2 as a function of c/d in (13), for
selected values of b/d

ones, large mixing, which may even be amplified by the
renormalization effects discussed below, is generated. More-
over, we observe that such large mixing does not require
near-degenerate neutrinos, but is also compatible with
larger neutrino mass hierarchies. If either b or c remains
close to zero, then the masses tend to be of comparable
magnitude. However, if both coefficients are as large as the
off-diagonal entries, the mass eigenvalues may spread out,
and the mixing angle may remain large. Cancellations can
arise automatically in the calculation of the lighter mass
eigenvalue, as we subtract entries of comparable magni-
tudes. To illustrate this, let us look at a specific set of
values. For b = 0.5, c = 1.5 and d = 1, sin22θ23 = 0.8;
however, the eigenvalues are 2.1 and -0.1, differing by a
factor of 20.

We conclude that the hierarchy m3 ≈ 10−1 to 10−1.5

eV � m2 ≈ 10−2.5 eV � m1 is compatible with a large
mixing angle, sin2 2θ23 ≥ 0.8, as suggested by the atmo-
spheric and solar neutrino data. On the other hand, ob-
taining the 1% or better degeneracy between m2 and m3
required in option (c) above, where there is significant

hot dark matter, would require a tighter adjustment of
parameters that would appear less natural, if there is no
corresponding symmetry.

3.2 Possible textures of Dirac
and Majorana mass matrices

Having commented on the possible structure of meff , we
next consider the question: From which forms of Dirac
and heavy Majorana mass structures may we obtain the
desired meff? The form of the heavy Majorana mass ma-
trix MνR may be easily found from (10), once the neutrino
Dirac mass matrix has been specified. It is clear that if the
neutrino Dirac mass matrix is diagonal, one particular so-
lution is

MνR ∝ (MνR)−1 ∝ meff ∝
(

0 1
1 0

)
. (17)

Of course, as the Dirac mass matrix changes, different
forms of MνR are required in order to obtain the required
form of meff . This is exemplified in Table 1, where we
show the textures that lead to meff as given in (17) for
various forms of symmetric Dirac mass matrices. In the
case of asymmetric mass matrices, one would have more
freedom in the choice of the expansion parameters6, as
seen in Table 2. There we repeat the analysis of Table 1,
applying it to the extreme case that one off-diagonal entry
of the 2 × 2 mass matrix is set to zero.

Let us now examine the tables, looking first at the
case of symmetric Dirac mass matrices. For the first tex-
ture, the Dirac mass matrix is almost diagonal, so a large
mixing in the heavy Majorana sector is directly commu-
nicated to meff . In the third texture, however, we see that
a large mixing angle in the heavy Majorana sector may
not lead to a large mixing in meff . In this case, in order to
obtain a large mixing in meff , we require a totally different
heavy Majorana mass texture, with the larger element in
the diagonal. Let us now look at the third texture in the
second table. This texture is similar to the one we just dis-
cussed, with the exception that there is a zero in the (1,2)
position. The zero’s appearance in this position brings us
back to the case where the large mixing in the heavy Majo-
rana sector is communicated to meff . These observations,
although simple, are of interest when we consider, later
in the discussion, specific examples in the framework of
flavour symmetries in realistic models.

3.3 Mixing-angle relations

Equipped with these illustrative examples, we now discuss
in a more general way how the mixing angles and mass
hierarchies in the various sectors are related; in particular,
we relax the specific form (17) of MνR . We consider the
case of a symmetric Dirac mass matrix with mixing angle

6 This freedom may, however, be limited if the mass patterns
arise from U(1) symmetries, as we discuss subsequently.
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Table 1. Approximate forms for some of the basic structures of sym-
metric textures, keeping the dominant contributions

mD
ν (mD

ν )diag MνR Mdiag
νR(

λ λ2

λ2 1

) (
λ 0
0 1

)
MN

(
2λ2 1
1 2λ

)
MN

(−1 0
0 1

)
(

λ2 λ2

λ2 1

) (
λ2 0
0 1

)
MN

(
2λ2 1
1 2

)
MN

(
(1 − √

2) 0
0 (1 +

√
2)

)
(

λ3 λ2

λ2 1

) (
λ3 0
0 1

)
MN

(
2λ3 λ

λ 2

)
MN

(−λ2/2 0
0 2

)
(

λ 1
1 λ

) (−1 0
0 1

)
MN

(
2λ 1
1 2λ

)
MN

(−1 0
0 1

)
(

λ2 1
1 λ

) (−1 0
0 1

)
MN

(
2λ2 1
1 2λ

)
MN

(−1 0
0 1

)

ϑ, define φ to be the mixing angle in the heavy Majorana
neutrino mass matrix, and denote the resulting mixing
angle in the light-neutrino mass matrix meff

7 as θ. The
heavy Majorana mass matrix can be parametrized as

MνR =

(
M2 cos2 φ+M3 sin2 φ (M2 −M3) cosφ sinφ
(M2 −M3) cosφ sinφ M3 cos2 φ+M2 sin2 φ

)

(18)

where the mixing angle is given by

tan 2φ =
sin(4ϑ− 2θ) + r2 sin 2θ − 2rR sin 2ϑ
cos(4ϑ− 2θ) + r2 cos 2θ − 2rR cos 2ϑ

. (19)

Here, M3 and M2 are the eigenvalues of the heavy Ma-
jorana mass matrix8, R ≡ (m2 + m3)/(m3 − m2) where
mi are the eigenvalues of the light-neutrino mass matrix,
and r ≡ (mD

2 + mD
3 )/(mD

3 − mD
2 ), where the mD

i are
the eigenvalues of the Dirac mass matrix. In the limit
where m2 = m3 (note that the signs must be the same)
we have tan 2φ = tan 2ϑ, while in the limit mD

2 = mD
3 ,

tan 2φ = tan 2θ. Motivated by the equivalence at the uni-
fication scale of the u-quark and neutrino Dirac mass ma-
trices in several GUTs, in Fig. 3 we plot sin2 2φ as a func-
tion of ϑ for θ = π/4 and r = (180 + 1.4)/(180 − 1.4) ≈
(mt + mc)/(mt − mc) ≈ 1.01, for three values of R: 0, 1
and 10. Figure 4 shows the same plots, but for r = 3.

The parameters chosen for the plots are representa-
tive of examples with small and large hierarchies in meff
and mD

ν . The choice R = 0 describes the case where
m2 = −m3, which we presented in Tables 1 and 2. This
structure arises when the off-diagonal entries of meff are
equal in magnitude while being much larger than the di-
agonal elements. The choice R = 1 represents examples

7 We drop for now the subindices referring to the (2,3) sector
of the neutrino matrices.

8 It is interesting that 19 exhibits a duality between meff and
MνR . Indeed, if one inverts the equation MνR = mD†

ν ·m−1
eff ·mD

ν

to meff = mD
ν · (MνR)−1 · mD†

ν , one sees that R and θ would
stand for the relevant parameters of MνR , while φ would be
the mixing angle in meff .

Table 2. Approximate forms for some of the basic structures
of asymmetric textures, keeping the dominant contributions

mD
ν (mD

ν )diag MνR Mdiag
νR(

λ 0
λ2 1

) (
λ 0
0 1

)
MN

(
2λ2 1
1 0

)
MN

(−1 0
0 1

)
(

λ2 0
λ2 1

) (
λ2 0
0 1

)
MN

(
2λ2 1
1 0

)
MN

(−1 0
0 1

)
(

λ3 0
λ2 1

) (
λ3 0
0 1

)
MN

(
2λ2 1
1 0

)
MN

(−1 0
0 1

)
(

λ 0
1 λ

) (
λ2 0
0 1

)
MN

(
2 λ

λ 0

)
MN

(
2 0
0 −λ2/2

)
(

λ2 0
1 λ

) (
λ3 0
0 1

)
MN

(
2 λ

λ 0

)
MN

(
2 0
0 −λ2/2

)
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Fig. 3. The 2 × 2 heavy Majorana mixing angle as a function
of the mixing angle ϑ in mD

ν , assuming a large hierarchy in its
eigenvalues r ≡ (mD

2 +mD
3 )/(mD

3 −mD
2 ), for selected values of
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ν

with large hierarchies (where m2 can be neglected), while
R = 10 describes a case with m2 = (9/11)m3, which is a
typical example where m2 and m3 are close in magnitude
but have the same sign. Concerning the Dirac neutrino
masses: The case with r = (180 + 1.4)/(180 − 1.4) ≈ 1.01
is typical of what one may expect in many unified (or
partially unified) models, where mD

ν ∼ mD
u . The choice

r = 3, on the other hand, corresponds to the case where
mD

2 = mD
3 /2. This is a complementary example, with

small hierarchies in mD
ν .

In Fig. 3, we study a case with a large hierarchy in
the Dirac mass matrix, which is seen in a wide number of
unified or partially unified models. In this example, R =
0 corresponds to the case where the two eigenvalues of
meff are equal, but with opposite signs, as in the examples
that appear in Table 1. In such a case, maximal mixing in
MνR (sin2 2φ = 1) is obtained for a diagonal Dirac mass
matrix (ϑ = 0). This corresponds to the first example of
Table 1 (the first row). For the same value of R, as ϑ starts
increasing, a different form of MνR , with a smaller (2,3)
mixing, has a similar effect. This is what we see in the
third example of Table 1.

However, in the limit where ϑ becomes quite large, we
again reach a solution with a large mixing in MνR . This
is indicated in the fourth and fifth examples of Table 1,
where we see clearly this amplification of the mixing in
the heavy Majorana sector, as the off-diagonal entries of
the Dirac mass matrix become the dominant ones. Notice
also that, in the second example, when the off-diagonal
elements of the Dirac mass matrix are of the order of the
(1,1) element, already the mixing in MνR has increased
significantly. On the other hand, we note that when the
Dirac neutrino mass matrix exhibits only a small hierar-
chy, this picture is altered, and R = 0 leads generically to
a large mixing. Indeed, we see that (again from Table 1)
for λ ≈ O(1), the mixing in the heavy Majorana mass
matrix is always large.

Fig. 3 shows that in the limit R → 1, |m2| � |m3|,
maximal mixing in the light-neutrino sector can be ob-
tained with negligible mixing in the heavy Majorana sec-

tor. Thus, for large hierarchies, even with a diagonal Dirac
matrix, we can get a large angle in meff , even for small
mixing in the heavy Majorana. This result might at first
seem rather surprising, but is related to the fact that the
solutions to the light-eigenvalue problem are quite sensi-
tive. It is also worth remembering that, if m11

eff ≈ m22
eff ,

then the mixing angle is large, even if the off-diagonal
entries of meff are very small. Let us work out formulae
(18,19) in this limiting case. We denote the light neutrino
eigenmasses by m2,3 and assume maximal mixing. In this
case, the form of meff is given by

meff =

(
m2 +m3 m2 −m3

m2 −m3 m3 +m2

)
(20)

and its inverse by

m−1
eff =

1
4m2m3

(
m2 +m3 m3 −m2

m3 −m2 m2 +m3

)
. (21)

If mc,mt (equal to the quark masses at the unification
scale) are the entries in the diagonal Dirac mass matrix,
then the heavy Majorana mass matrix that leads to max-
imal mixing is given by

MνR ∼
(

(m2 +m3)m2
c (m3 −m2)mcmt

(m3 −m2)mcmt (m3 +m2)m2
t

)
(22)

with a mixing tan 2φ = 2(m2 +m3)m2
c/((m3 −m2)(m2

t −
m2
c)). For m3 � m2, this mixing is indeed small if the

Dirac mass hierarchies are large: tan 2φ ∼ mc/mt. How-
ever, if the Dirac mass hierarchies are smaller, then the
mixing angle increases in this case as well. This we can
see in more detail in Fig. 4.

Let us now comment on the sensitivity of this solution.
Suppose we keep MνR as above, but modify the second
eigenvalue of the Dirac mass matrix to kmt. In this case,
the mixing angle of meff is found to be

sin2 2θ =
4k2

(1 + k2)2
. (23)

For k = 1, we find sin22θ = 1, which falls to sin22θ = 0.8
for k ≈ 0.6. Continuing to k = 1/2, we find sin22θ = 0.64,
and for k = 1/4 we obtain sin22θ = 0.22. We conclude
that sin22θ is in the preferred region ≥ 0.8 for quite a
generic range of values of k.

To conclude this section, we note that the case R =
10 is also shown in Figs. 3 and 4. We see that this case
is similar to the previous one, but when the Dirac mass
hierarchy is small, there is a smaller sin22φ than in the
other cases.

This phenomenological analysis indicates that solu-
tions to the atmospheric neutrino problem correlate with,
and severely constrain, the masses and mixing hierarchies
in the Dirac and heavy Majorana sectors. We note that
large mixing is not necessarily incompatible with a large
hierarchy between two neutrino masses. The outcome of
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this discussion can serve as a guide in constructing realis-
tic models of neutrino masses, as we do in Sect. 7. Before
that, however, we analyze possible modifications, caused
by renormalization-group effects, of the above results, and
then we discuss how this 2 × 2 analysis may be embedded
in a fuller 3 × 3 analysis.

4 Renormalization-group effects

Up to now, we have discussed the situation in which a
maximal mixing angle (23) appears already at the GUT
scale. However, this is not the only possibility. Within
the minimal supersymmetric extension of the Standard
Model (MSSM), it has been found that renormalization-
group effects may amplify the mixing [22,23]. Whether
this happens depends on the magnitude of hτ ; for large
hτ , for which large large tanβ is necessary, the mixing an-
gles in (23) and (13) may be amplified significantly. For
some examples, initial values of sinθ23 ≥ 0.3 can lead to
large mixing at low energies [24,25], and similar results
have been found for the mixing at large tanβ (13). On
the other hand, the mixing in (12) remains essentially un-
changed even for large tanβ, and renormalization-group
effects can be neglected for small tanβ. We now discuss
such renormalization-group effects in more detail.

4.1 Renormalization-group equations

Between the GUT scale and the scale of the heavy Majo-
rana neutrinos, MN , the mixing angle is affected by the
running9 of the Dirac neutrino coupling YN ,

8π2 d
dt

(YNY
†
N ) =

{
−
∑
i

ciNg
2
i + 3(YNY

†
N )

+Tr[3(YUY
†
U ) + (YNY

†
N )]
}

(YNY
†
N )

+
1
2
{(YEY

†
E)(YNY

†
N )

+(YNY
†
N )(YEY

†
E)}, (24)

where t is the logarithmic renormalization-group scale,
ciN = (3/5, 3, 0) for the MSSM, and we denote the Dirac
couplings of other types of fermions F by YF . We see from
these equations that the various entries of mD run dif-
ferently: Large Yukawa couplings, which lower YN , have
a bigger effect on mD

33 than on the rest of the elements.
This alters the structure of the Dirac mass matrix, in turn
affecting the magnitude of the mixing angle. This effect
becomes more relevant in examples where cancellations
between various entries may lead to amplified mixing in
meff .

Below the right-handed Majorana mass scale, YN de-
couples and the relevant running is that of the effective
neutrino mass operator [23],

9 We work at the one-loop level in this paper.

8π2 d

dt
meff =

{
−
(3

5
g2
1 + 3g2

2

)
+ Tr[3YUY

†
U ]
}
meff

+
1
2
{(YEY

†
E)meff +meff(YEY

†
E)T } , (25)

which we use later in order to study the variation in the
diagonal entries in meff . Off-diagonal entries enter into the
neutrino mixing angle θ23, whose running is given by [23]:

16π2 d

dt
sin2 2θ23 = −2 sin2 2θ23(1 − sin2 2θ23)(Y 2

E3 − Y 2
E2)

×m33
eff +m22

eff

m33
eff −m22

eff
. (26)

As this equation indicates, sin22θ23 may be particularly
strongly affected as one runs down from the GUT to the
electroweak scale, if (i) YE3 is large, and (ii) the diago-
nal entries of meff are close in magnitude. Thus the exact
evolution of the mixing angle depends on the particular
texture being studied.

In general, the amplification effects that one may ob-
tain for large tanβ are on the order of 30–50%, for cases
where one starts with a small or moderate value for the
mixing angle at the GUT scale. However, for particular
combinations of textures for the Dirac and the heavy Ma-
jorana mass matrices, cancellations between various terms
may lead to even larger amplifications of the mixing an-
gles. It has been noted in such cases that the running of
the Yukawa couplings between the GUT scale and the ef-
fective MN scale may strengthen such cancellation effects,
thus increasing the mixing significantly [24]. A similar ef-
fect may arise below MN . Examination of (26), which de-
scribes the running of the mixing angle indicates that sig-
nificant amplification may be obtained for textures where
m22

eff and m33
eff are close in magnitude [23].

4.2 Semi-analytic solutions

In order to get a better feeling for the magnitude of the
mixing angle, it is useful to look for semi-analytic solutions
to one-loop equations (25,26). To do so, we start with
the differential equations for the diagonal elements of the
effective neutrino mass matrix. These are given by

1
m22

eff

d
dt
m22

eff =
1

8π2

(−cig2
i + 3h2

t

)
(27)

and
1

m33
eff

d
dt
m33

eff =
1

8π2

(−cig2
i + 3h2

t + h2
τ

)
. (28)

For the m33
eff element, simple integration yields

m33
eff

m33
eff,0

= exp
{

1
8π2

∫ t

t0

(−cig2
i + 3h2

t + h2
τ

)}

= Ig · It · Iτ , (29)

where

Ig = exp
[

1
8π2

∫ t

t0

(−cig2
i dt)

]
(30)
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It = exp
[

3
8π2

∫ t

t0

h2
tdt
]

(31)

Iτ = exp
[

1
8π2

∫ t

t0

h2
τdt
]
, (32)

and m33
eff,0 is the initial condition. This condition is de-

fined at MN , at the stage when hN decouples from the
renormalization-group equations. For simplicity of presen-
tation, we assume for the sake of the following discussion
that MN ≈ MGUT. Similarly, we find that

m22
eff = m22

eff,0 · Ig · It, (33)

so that m33
eff/m

22
eff = Iτ · m33

eff,0/m
22
eff,0, leading to the for-

mula

m33
eff +m22

eff

m33
eff −m22

eff
=
m33

eff,0Iτ +m22
eff,0

m33
eff,0Iτ −m22

eff,0
≡ f(Iτ ) (34)

for the diagonal mass-matrix elements.
We can then convert the one-loop evolution equation

(26) for sin2θ to a differential equation for T = tan2 2θ:

dT
T

= − 2
16π2h

2
τf(Iτ ). (35)

The solution to (35) is

tan2 2θ = tan2 2θ0I2(hτ ), (36)

with

I2(hτ ) = exp
{

− 1
8π2

∫ t

t0

h2
τf(Iτ )

}
. (37)

We see that the only parameters that enter into the fi-
nal formula are the initial conditions and an integral that
incorporates all the renormalization-group running of hτ .

4.3 Some implications

The following are the most important deductions we ex-
tract from the above equations. Suppose we start with a
generic meff at a high scale. Then m33

eff decreases more
rapidly than m22

eff , due to the effect of the τ Yukawa cou-
pling. If one starts with values of m22

eff and m33
eff that are

relatively close in magnitude, the expectation is that at a
given scale they may become equal, in which case the mix-
ing angle is maximal. How fast this happens depends on
the magnitude of hτ . The larger the value of hτ , the ear-
lier the entries become equal. Of course, hτ also decreases
while running down to low energies, and this has to be
taken into account as well. The scale where the mixing
angle is maximal is given by the relation

Iτ =
m22
eff,0

m33
eff,0

. (38)

After reaching the maximal angle at some intermediate
scale, the running of hτ results in

m33
eff,0 < m22

eff,0.

This changes the sign of f(Iτ ) and results in a rather rapid
decrease of the mixing. Therefore, in order for a texture of
this type to be viable, there needs to be a balance between
the magnitudes of hτ and m33

eff − m22
eff at the GUT scale.

If the splitting is small and the coupling large, then the
maximal value for the mixing will be obtained too early
to survive at low energies.

Let us explore the circumstances under which the mix-
ing becomes close to maximal at low scales. We consider an
example where hτ = ht = hb ≡ h = 3, MGUT = 1.1×1016

GeV, and the common gauge coupling at the unification
scale is 0.039. Also, we take the scale of supersymmetry
breaking to be around 1 TeV. We find that a texture [23]
with

m22
eff = 0.6, m23

eff = 0.035, m33
eff = 1.0, (39)

which has a starting value for the mixing given by sin22θ ≈
0.03, reaches maximal mixing: sin22θ ∼ 1 at ≈ 1 TeV. If
we assume the same texture but take h = 2, the mixing
is only sin22θ ≈ 0.35 at ≈ 1 TeV. However, for the same
coupling, making the modification to m22

eff = 0.7 leads to
maximal mixing at around 5.5 TeV. Finally, for h = 1 at
the GUT scale, we need to modify m22

eff to approximately
0.8, in order for maximal mixing to occur around the TeV
scale.

Let us also look at another specific example texture.
We assume the texture

meff =

(
1 − x x2

x2 1 + x

)
, (40)

with x ≈ 0.2, so that the off-diagonal elements are much
smaller than the mass splitting of the diagonal ones. We
will see renormalization-group effects lead to a very large
increase of the mixing angle. In this case, the one-loop
running of the mixing angle is indicated in Fig. 5. Here,
we took as initial conditions MN ≈ MGUT = 1016 GeV,
a common coupling at the unification scale 0.042, and
ht = hb = hτ = 2.0. This running indicates that, for
this example, the mixing has indeed changed significantly
as we run down to lower energies.

5 Sample textures
in three-generation examples

So far, we have worked in the limit in which the solar neu-
trino problem is resolved by a small mixing angle. How-
ever, this need not be the case, and one should consider
what happens if this mixing is also large10. In this case,
we need to consider the general 3 × 3 mixing problem.
Clearly, we can proceed as in the case of 2 ×2 mixing, and
investigate the relations between the mixing angles and
hierarchies in the Dirac, heavy and light Majorana mass
10 We also note that a hybrid solution involving both reso-
nance transitions and vacuum oscillations, with intermediate
values of the mixing angle, has been proposed [26], and solu-
tions consistent with realistic models have been explored [27].
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meff =


m1c

2
12 + m2s

2
12

(m1−m2)c12s12√
2

(m1−m2)c12s12√
2

(m1−m2)c12s12√
2

1
2 (m3 + m1s

2
12 + m2c

2
12) 1

2 (−m3 + m1s
2
12 + m2c

2
12)

(m1−m2)c12s12√
2

1
2 (−m3 + m1s

2
12 + m2c

2
12) 1

2 (m3 + m1s
2
12 + m2c

2
12)


 , (42)

4 6 8 10 12 14 16
log10E

0

0.2

0.4

0.6

0.8

s
i
n
2
2

Θ

Fig. 5. An example of the renormalization-group enhancement
of the 2 × 2 light-neutrino mixing angle, starting from a small
value at the GUT scale. We assume initial Yukawa couplings
ht = hb = hτ = 2.0, corresponding to a large value of tanβ

matrices. However, the number of parameters is very large,
and one cannot proceed far without making assumptions
about the patterns of mixing and the structure of the mass
matrices. We write the generic form of a 3×3 mixing-angle
matrix (ignoring phases) as

V3×3 =


 c12 −s12c13 −s12s13
s12c23 c12c23c13 + s23s13 c12c23s13 − s23c13
s12s23 c12s23c13 − c23s13 c12s23s13 + c23c13,




(41)

where sij , cij stand for sin θij and cos θij , respectively; we
will explore the implications of various possible hierarchies
among the angles θij . Investigating the possible hierar-
chies within meff is then straightforward.

5.1 Cases with maximal mixing

We first assume, for simplicity of discussion, that θ23 is
maximal11, and that θ12 � θ13 ∼ 0. In this case, meff =
V3×3m

diag
eff V †

3×3 is given by (42) on top of the page, and
one may look at the implications for mass hierarchies. Ini-
tially, we prefer to simplify further to the case of maximal
θ12, θ23 mixing. In this case,

11 We saw, however, in the previous section that for large hτ ,
the (23) mixing angles (and similarly, the (13) angle), can be
significantly modified.

meff (43)

=




m1+m2
2

m1−m2

2
√

2
m1−m2

2
√

2
m1−m2

2
√

2
1
4 (m1 +m2 + 2m3) 1

4 (m1 +m2 − 2m3)
m1−m2

2
√

2
1
4 (m1 +m2 − 2m3) 1

4 (m1 +m2 + 2m3)


 .

We saw in Sect. 3 that, when all the entries of a 2×2 matrix
are of the same order of magnitude, plausible cancellations
may still lead to large hierarchies among the eigenvalues,
even in the presence of a large mixing. We can visualize
the type of texture of 3 × 3 meff (43) that is consistent
with such maximal mixing by considering specific limiting
cases for the mi.

For example, in the limit m3 � m2 � m1, one has

meff =
m3

2


0 0 0

0 1 −1
0 −1 1


+

m2

2




1 − 1√
2

− 1√
2

− 1√
2

1
2

1
2

− 1√
2

1
2

1
2




+
m1

2




1 1√
2

1√
2

1√
2

1
2

1
2

1√
2

1
2

1
2


 . (44)

On the other hand, if one considers near-degenerate cases
m ≡ m3 ∼ m2 ∼ m1 : ∆ ≡ |m3|−|m2| � δ ≡ |m2|−|m1|,
there are various possibilities, distinguished by the relative
signs of the eigenvalues. For example, if all the eigenvalues
have the same sign, one finds the following texture:

meff = m2


1 0 0

0 1 0
0 0 1


+

∆

2


0 0 0

0 1 −1
0 −1 1




−δ

2




1 1√
2

1√
2

1√
2

1
2

1
2

1√
2

1
2

1
2


 . (45)

On the other hand, if one of the eigenvalues has a differ-
ent sign from the other two, this structure gets modified.
Suppose, for example, that m1 and m3 are positive and
m2 negative. We then find

meff =
m2

2




0 −2√
2

−2√
2

−2√
2

−1 1
−2√

2
1 −1


+

∆

2


0 0 0

0 1 −1
0 −1 1




−δ

2




1 1√
2

1√
2

1√
2

1
2

1
2

1√
2

1
2

1
2


 . (46)
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We return later to these suggestive examples, but first
we discuss how meff may be derived from the primary
Dirac and Majorana mass matrices of the fundamental
theory, which may be some GUT and/or string model.

5.2 Heavy Majorana mass textures
with matched mixing

Up to now, we have been discussing possible forms of meff
that are consistent with the atmospheric and solar neu-
trino data. However, in a more fundamental model, the
possible U(1) symmetries and string selection rules, as well
as the gauge group structure, predict the structure of the
Dirac and heavy Majorana matrices, while meff is a sec-
ondary output of the see-saw mechanism. Thus, to make
contact with such unified (or partially unified) theories, it
is essential to analyze the forms of Dirac and heavy Majo-
rana mass matrices that are suggested by the experimental
data. Such an analysis may reveal relations between the
mass and mixing hierarchies of the different neutrino sec-
tors that can then be used as guidelines in investigations
that involve realistic models, as we discuss in Sect. 7.

In general, calculating the heavy Majorana mass ma-
trix involves 12 parameters: the 6 eigenvalues of mD

ν plus
meff , and 3 mixing angles for each of these two matri-
ces. General formulae for all the entries in the full 3 × 3
MνR matrix, in terms of all these parameters, are easily
derived but quite complicated, and are not given here. In-
stead, we look at some limiting cases. It is convenient to
parametrize these cases in terms of the hierarchy factors
x ≡ m1/m3, y ≡ m2/m3 for the ratios of eigenvalues of
meff , and λ1 ≡ MνR,1/MνR,3, λ2 ≡ MD

ν2/M
D
ν3 for the ratios

of eigenvalues of the neutrino Dirac mass matrix mD
ν .

We initially assume one large mixing angle in the ef-
fective light Majorana matrix. Then we can distinguish
two cases for the structure of the heavy Majorana matrix.
The first is that of matched mixing, when there is no large
mixing in other sectors of either the light Majorana or the
Dirac matrices, in which case the problem is equivalent to
the 2 × 2 case considered previously. In particular, con-
sider first the possibility that the Dirac mass matrix is
diagonal to a good approximation. Then the form of the
heavy Majorana mass matrix becomes

MνR ∝




λ2
1
x 0 0

0 λ2
2(y+1)

2y
λ2(y−1)

2y

0 λ2(y−1)
2y

(y+1)
2y


 . (47)

In the particular case where y = m2/m3 = −1, this leads
to a texture of the form

MνR ∝




λ2
1
x 0 0
0 0 λ2

0 λ2 0


 , (48)

which resembles one of the popular 2 × 2 textures in Ta-
ble 1.

Alternatively, for large hierarchies inmeff , i.e., for small
mass ratios x � y � 1, the form of the heavy Majorana
mass matrix becomes

MνR ∝




λ2
1
x 0 0

0 λ2
2

2y
λ2
2y

0 λ2
2y

1
2y


 , (49)

which has some similarities with textures displayed in Ta-
ble 1, but is not identical to any of them. This texture
shows that, for large hierarchies in meff , and an almost
diagonal MD

ν , the (23) mixing in MνR scales as λ2. This
is consistent with what we found in Figs. 3 and 4. We
recall that large hierarchies in meff are described by the
limit R → 1. We see in Fig. 4 that, for small Dirac hier-
archies and negligible Dirac mixing angle ϑ, the angle φ
that describes (23) mixing in MνR has intermediate val-
ues. However, as the Dirac hierarchies become large, φ
becomes very small, as is indicated in Fig. 3.

If, however, we take the Dirac mass matrix to have
maximal (23) mixing, the general texture (47) becomes

MνR ∝




λ2
1
x 0 0

0 (λ2
2+y)
2y

(−λ2
2+y)
2y

0 (−λ2
2+y)
2y

(λ2
2+y)
2y


 (50)

and clearly its form depends on the relative magnitudes of
λi, x and y. In the specific case where the meff hierarchy is
much greater than the neutrino Dirac hierarchy, λ2 � y,
we obtain the texture

MνR ∝ diag

(
λ2

1

x
,
λ2

2

2y

(
1 −1

−1 1

))
, (51)

whereas when the meff hierarchy is smaller, λ2 � y we
find

MνR ∝ diag

(
λ2

1

x
,
1
2

(
1 1
1 1

))
. (52)

We note that (48,51,52) span all but one of the possibilities
for the 2 × 2 submatrix with indices (2,3).

We again compare these solutions with the results that
we presented in Figs. 3 and 4, in the region where the
(23) Dirac mixing angle ϑ becomes maximal. We see in
Figs. 3 and 4 that, independently from the Dirac and the
meff mass hierarchies, as ϑ increases, so does the required
mixing in MνR . Moreover, for small mass differences in
meff , the solution corresponds to the last two examples of
Table 1, which indicate exactly this effect.

5.3 Mismatched mixing

A different structure arises when there is more than one
mixing angle in meff , or when there is a large Dirac mixing
angle that involves different generations from those of the
light Majorana matrix. This happens, for example, when
the atmospheric problem is solved by νµ → ντ oscillations
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and the Dirac mass matrix is related to the quark mass
matrix, with Cabibbo mixing between the first and sec-
ond generations. The structure of the Majorana matrix
becomes more complicated for this mismatched mixing.

In the case where meff has two large angles, the tex-
tures are of course more complicated than in the previous
subsection. To see this, note that for an almost-diagonal
Dirac mass matrix, the desired form of the heavy Majo-
rana mass matrix for y = −1 becomes

MνR ∝




λ2
1

2x
−λ1λ2

2x
λ1√

2
−λ1λ2

2x
λ2

2
2x

λ2√
2

λ1√
2

λ2√
2

0


 , (53)

and for y � 1 becomes

MνR ∝
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1
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√
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 . (54)

In such a case, large Dirac hierarchies (and in particular
λ1 � λ2) effectively decouple the light entry of the heavy
Majorana mass matrix from the heavier ones.

This is no longer true, however, if the (12) mixing angle
in the Dirac mass matrix becomes π/4, and we still have
two large mixing angles in meff .

In this case,

MνR ∝
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which, within the limit of a large meff hierarchy y � 1
and λ2

2x � λ2
1y, gives the texture

MνR ∝ 1
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Alternatively, if both the (12) and (23) Dirac mixing an-
gles are maximal,

MνR ∝
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(56)
Once again, the exact form of the texture depends on the
relative mass hierarchies in the various neutrino sectors.
For example, in the double limit y � λ2

2 and x � 2λ2
1 of

the hierarchy factors, a limit that seems natural because
Dirac masses exhibit large hierarchies in many models, we
obtain:

MνR ∝ 1
2

×




1
2

1
2

1√
2
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2

1
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2
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2

1√
2

1


 .

Examining the above cases we see, as expected, that no
simple 2 × 2 substructure emerges. Moreover, the precise
way in which the various entries in the full 3×3 matrix are
filled depends on details of the mass hierarchies studied.

5.4 Related neutrino Dirac and quark mixing

Finally, we examine more explicitly an example where the
atmospheric problem is solved by νµ → ντ oscillations and
the neutrino Dirac mass matrix is related to the u-quark
mass matrix, with its CKM mixing. Such mixing in the
Dirac sector arises naturally in some unified models, such
as those related to SO(10), and may in general be signif-
icantly different from the pattern of the heavy Majorana
mass matrix.

If s̃1, c̃1 refer here to Cabbibo mixing, θ is the (23)
neutrino mixing angle, and we neglect possible (12) and
(13) neutrino mixing, the resulting heavy Majorana form
is

M11 = (muc̃
2
1 +mcs̃

2
1)

2/m1

+(mc −mu)2(cos2 θ/m2 + sin2 θ/m3)(s̃1c̃1)2

M12 = (mc −mu)c̃1s̃1
[
(muc̃

2
1 +mcs̃

2
1)/m1+

+ (mcc̃
2
1 +mus̃

2
1)(cos2 θ/m2 + sin2 θ/m3)

]
M13 = (m2 −m3)mt(mc −mu)s̃1c̃1 sin(2θ)/(2m2m3)

M22 = (mc −mu)2(c̃1s̃1)2/m1

+(mcc̃
2
1 +mus̃

2
1)

2(cos2 θ/m2 + sin2 θ/m3)

M23 = (m2 −m3)mt sin(2θ)(mcc̃
2
1 +mus̃

2
1)/(2m2m3)

M33 = m2
t (cos2 θ/m3 + sin2 θ/m2). (57)

To give an idea of the heavy neutrino textures that arise
in this case, we present two representative numerical ex-
amples, for small and large neutrino mass hierarchies. We
assume the following conditions: a Cabibbo angle ∼ 120, a
near maximal (23) neutrino mixing angle θ ∼ 44.50, neg-
ligible (12) and (13) mixings in meff , mu = 5 MeV, mc =
1.4 GeV and mt = 174 GeV.

In the first example, we consider light neutrino masses
with the condition m1 : m2 : m3 = 0.01 : 0.1 : 1.0,
m3 ≈ 0.1 eV. In this case, the numerical matrix is of
the following form:

MνR ∝


 8.8 × 109 4.0 × 1010 −2.2 × 1012

4.0 × 1010 1.8 × 1011 −1013

−2.2 × 1012 −1013 1.6 × 1015


 . (58)

In terms of an expansion parameter ε ≈ 0.42, we can
parametrize MνR as follows:

MνR ∝


 ε14 ε12 −ε8
ε12 ε10 −ε6
−ε8 −ε6 1


 . (59)

On the other hand, for m3 = −m2 = m1 ≈ 1 eV, and the
same parameters for meff and mD

ν , the heavy Majorana
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mass is numerically

MνR ∝


 2.9 × 106 1.2 × 107 4.9 × 1010

1.2 × 107 4.9 × 107 2.3 × 1011

4.9 × 1010 2.3 × 1011 5.3 × 1011


 . (60)

In terms of the expansion parameter ε ≈ 0.42, we get the
following for MνR :

MνR ∝


 ε14 ε12 ε3

ε12 ε10 ε

ε3 ε 1


 , (61)

where again, O(1) coefficients are ignored.
Comparing the two numerical examples above, we no-

tice the change of the required form of the heavy Majorana
mass matrix for large mixing in meff , as we pass from large
to small neutrino mass hierarchies. Note in particular the
increase in both the (23) and the (13) mixing angles of
MνR as we pass from large to small hierarchies in meff .
It will be interesting later to compare the qualitative fea-
tures of the two structures (59,61) with the predictions of
a specific flipped SU(5) model.

The above cases exemplify textures that lead to expla-
nations of the Super-Kamiokande data, in analogy with
the 2 × 2 cases that we discussed in Sect. 3. For a given
Dirac mass matrix, the viable forms of the heavy Ma-
jorana masses are quite constrained. As we discuss now,
these phenomenological textures may severely constrain
the types of flavour symmetries that could lead to large
neutrino mixing in realistic models.

6 Comments on neutrino textures
and flavour symmetries

In many models, the structures of the fermion mass ma-
trices, including those of the neutrinos, are dictated by
family symmetries, of which the simplest possibility is a
single Abelian U(1) symmetry. The structures of the ma-
trices are controlled by the flavour charges of the various
fields: If an operator has zero total charge, then it is al-
lowed in the low-energy Lagrangian. Usually, one assumes
that the light Higgs charges are such that only the (3,3)
renormalizable Yukawa coupling to H2, and to H1 in the
case of large tanβ, is allowed. The remaining entries are
generated via the spontaneous breaking of the U(1) sym-
metry, by the VEVs of singlet fields 〈θ〉, 〈θ〉, with U(1)
charges ±1 in the simplest case. Here we make just a few
remarks about such models.

The first step in describing neutrino masses is to de-
termine the Dirac and heavy Majorana mass matrices.
The simplest case arises when we add three generations
of right-handed neutrinos, leading to predictions for light
neutrino masses through the see-saw mechanism as above.
In such a model, SU(2) invariance fixes the charges of the
left-handed neutrino states to be the same as those of the
charged leptons. Then, if one imposes a left–right sym-
metry, the charges of the right-handed neutrinos are also

fixed. In the case of asymmetric mass matrices, there is
more freedom in the choice of the charges, but in specific
models, which we discuss later, the U(1) charges of the
various fields can be correlated.

The Majorana mass terms for the right-handed neutri-
nos arise from contributions of the form νiR.ν

j
R(singlet)m1

(singlet)n2 ..., where the (singlet)i stand for SU(3)⊗SU(2)⊗
U(1)-invariant scalar fields. The various choices for the
charges of the singlet fields lead to a variety of possible
forms for the Majorana mass, which recur in richer models
where more than one type of singlet field can be present.
The implications of such models will be manifest in Sect. 7
in which we discuss a specific model, namely string-derived
flipped SU(5). For the moment, let us initially assume the
existence of a field Σ with a charge opposite to that of
some given combination νRi ν

R
j . This automatically allows

the (i, j) entry of the heavy Majorana mass matrix to be of
order unity, while the rest of its entries are generated by
non-renormalizable contributions and are therefore sup-
pressed. If i = j, the largest entry will be on the diagonal,
as it is in the generic form usually studied for Dirac mass
matrices. However, if i 6= j, then an effective submatrix of
the form (

0 1
1 0

)

appears, suggesting that large mixing may be generic. This
is true for this case in particular because it is difficult to
generate additional large entries if there is only one singlet
field Σ in addition to θ, θ. However, extra terms can be
generated if additional singlets are available [9]. In each
case, the dominant elements of the mass matrix will be
determined by the VEVs of the singlet fields, and the order
of the non-renormalizable operators12.

In Sect. 3, we examined the possible forms of phe-
nomenological textures that may lead to large mixing; we
now illustrate their use in constraining theoretical models
with flavour symmetries. Suppose that we have a model
with a single U(1) symmetry, under which quarks and lep-
tons have the same charge [28]. Then, for the 2 × 2 quark
Dirac mass matrices, one has the forms

mD
u =

(
ε2p+h2 εp+q+h2

εp+q+h2 ε2q+h2

)
, mD

d =

(
ε2p+h1 εp+q+h1

εp+q+h1 ε2q+h1

)
,

(62)
where p, q are the charges of the second- and third-gen-
eration quarks, and h1,2 the charges of the Higgs fields.
Obtaining the correct mass hierarchies and VCKM mixing
automatically implies that the up- and down-quark mass
matrices have similar structures, with both the (1,2) and
(2,1) entries larger than the (2,2) ones. In this case, a large
mixing angle in the heavy Majorana mass matrix may

12 Both the relative magnitudes and the absolute magnitudes
of the neutrino masses depend on the VEVs of the singlet fields.
The requirement of obtaining realistic mass scales for neutrino
physics can be used to constrain the possible flat directions in
specific models.
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not get communicated to meff [6], and the large mixing in
meff would have to arise mainly from mD

ν and the charged
lepton sectors [7].

This analysis gets modified if:
1) Neutrinos and up-type quarks of the same gener-

ation do not belong to the same multiplets of the gauge
group. Then we can have diagonal neutrino mass matrices,
and non-diagonal quark ones.

If, however, we require similar neutrino and quark struc-
tures, and still want to carry large mixing in mνR over to
meff , we have alternatives, of which the first is the follow-
ing.

2) Asymmetric mass matrices with different charges
for up and down quarks yield different structures for the
mass matrices.

In this case, the VCKM mixing may arise entirely from
one sector, e.g., the down quarks, whereas in the up sec-
tor we may have an almost diagonal form, with the only
significant requirement being that of getting the correct
mc/mt ratio. We note that in realistic GUT models, such
as the one we discuss below, the Dirac mass matrices
are indeed expected to be asymmetric, since the up and
down quarks are assigned to different representations of
the GUT group. Moreover, even in models wherein we
combine flavour symmetries with GUTs in which parti-
cles of the same generation belong to the same multiplets,
the existence of different Clebsch–Gordan coefficients can
lead to additional zeros beyond those of the flavour sym-
metry, and thus to asymmetric textures, even if we start
with symmetric charges.

3) Alternatively, one may have symmetric mass ma-
trices, but the up and down matrices may have different
structures of zero elements.

This again can arise either because of zero Clebsch–
Gordan coefficients, or the presence of additional resid-
ual symmetries [9]. In this case, we can again obtain the
correct VCKM mixing entirely from one sector, and have
almost-diagonal forms for the up-quark and Dirac-neutrino
masses.

7 Neutrino mixing in a realistic flipped
SU(5) model

Let us now look at a specific example of the structure
generated by U(1) symmetries, namely the ansatz made
in [13] in the context of a realistic flipped SU(5) model
derived from string, which is reviewed in the Appendix13.
This model contains many singlet fields, and the mass
matrices depend on the subset of these that get non-zero
VEVs, which in turn depends on the choice of flat direction
in the effective potential, which is ambiguous, so far.

7.1 Charged-lepton masses and mixing

In previous sections, we worked with a field basis that was
diagonal for the mass eigenstates of the charged leptons.
13 For previous studies of fermion mass matrices in this model,
see [29,30]. Neutrino masses have been studied in [31,30].

In the context of the flipped SU(5) model, this basis has
to be identified relative to the string states listed in the
Appendix; this requires a discussion of the charged-lepton
mass matrix. The importance of this discussion lies in the
possibility that there may be additional mixing coming
from this sector. We recall that the mixing angles of rele-
vance are the combinations given by

Vν = V m†
ν V m`L , (63)

where the symbols V mν , `L denote the rotation matrices
required to diagonalize the mass matrices for neutrinos
and left-handed charged leptons, respectively.

The candidate terms for charged-lepton mass terms at
the third-order level are

f1`
c
1h1, f2`

c
2h2, and f5`

c
5h2, (64)

where, here and later, we do not display factors of the
gauge coupling. The first term generates the τ mass, but
because the last two are proportional to the same Higgs
h2, they cannot yield a mass hierarchy. We therefore as-
sume that the VEV of the effective light Higgs has only a
small component in the h2 direction, as is also assumed in
[13]. Thus, in a first approximation we assign `c1 and the
charged component of f1 to the τ , and the corresponding
`c2,5, f2,5 to the e, µ, with the precise flavour assignments
of the latter to be discussed below.

Assuming a very small VEV for h2, the next candidate
mass terms appear at fifth order 14 [31]:

f2`
c
2h1(φ

2
i + φ

+
φ

−
), f5`

c
5h1(φ

2
1,4 + φ

+
φ

−
). (65)

Among the fields given in parentheses, previous analyses
suggest (see the Appendix) that φ1,2 and φ

−
have zero

VEVs. Therefore the possible mass terms are

f2`
c
2h1φ

2
3,4, f5`

c
5h1φ

2
4. (66)

It is apparent that, in order to obtain a hierarchy mµ �
me, we must assume that either φ

2
3 � φ

2
4 or the inverse.

As we argue later on the basis of the u-quark masses and
mixing that φ4 � 1, we assume that φ3 � φ4.

Continuing to seventh order, we find the term

f5`
c
2h1∆2∆5(φi)

2, (67)

but, to this order, we still find no term mixing f1, `
c
1 with

the other lepton fields. As mentioned in the previous para-
graph, we assume that φ3 � φ4, φ1,2 = 0. The charged-
lepton mass-mixing problem can therefore be reduced to
the following 2 × 2 matrix for the f5,2, `

c
5,2 basis:

m`(2 × 2) ∝
(
φ

2
4 ∆2∆5φ

2
3

0 φ
2
3

)
, (68)

14 Here and subsequently, higher-order interactions should al-
ways be understood to be scaled by the appropriate inverse
power of some relevant dimensional scale Ms. We expect this
to be O(1018) GeV in conventional string theory, but it might
be as low as ∼ 1016 GeV in M theory. The VEVs we quote
later for singlet fields are likewise in units of Ms.



402 J. Ellis et al.: Neutrino textures in light of Super-Kamiokande data

where, again in view of the u-quark mass matrix dis-
cussed below, we believe that ∆2∆5 is not small. Since
φ3 � φ4, we assign the charged leptons to the eigenvec-
tors of (68) as follows: (ec, µc) = (`c5, `

c
2) and (eL, µL) =

(f5 − O(∆2∆5)f2, f2 + O(∆2∆5)f5), with the ratio of
mass eigenvalues

mµ

me
∼ m`1

m`2

∼ φ
2
3

φ
2
4

. (69)

Thus we see explicitly that we can arrange a hierarchy
mµ � me, at the price of a potentially large mixing an-
gle among the left-handed charged leptons: V m`L (12) =
O(∆2∆5). This would lead us to naively expect corre-
spondingly large νe → νµ mixing, unless there is some
cancellation with V mν in (63).

7.2 Dirac neutrino masses

Even with a given choice of a flat direction, the neutrino
mass matrix that arises from the string model is rather
complicated, because one must consider light Majorana,
Dirac and heavy Majorana mass matrices. The first of
these could arise from direct effective operators involv-
ing two left-handed neutrinos, two light Higgs doublets,
and singlet fields. However, we find no candidates for such
terms up to fifth order, and shall not discuss them fur-
ther here. As for the Dirac mass matrix, since the neu-
trino flavours are in the same representations as the u-
type quarks, with the left-handed neutrinos belonging to
the representations f1,2,5, and the right-handed neutrinos
belong to the decuplets F2,3,4, one would naively expect
the relation

mD
ν = (mu)†. (70)

However, one should not forget that there may be Dirac
mass couplings of light neutrinos to singlet states not in-
cluded among the F2,3,4, and that these fields may also
mix with the singlets via Majorana mass terms, possibili-
ties that will play important rôles later.

At third order, we find the following contribution to
the Dirac neutrino mass matrix, which corresponds to the
dominant contribution to mt:

F4f5h45. (71)

Progressing up to sixth order, the following additional
terms appear:

F2f2h45φ4, F4f2h45∆2∆5 (72)

F2f5h45∆2∆5φ4, F3f5hh45∆3∆5φ3. (73)

We observe that the Dirac matrix again leaves the ν1 com-
ponent of f1 essentially decoupled from the other light
neutrinos, up to sixth order. The most important mixing
effects are therefore expected to take place between f2 and
f5, and the problem can be reduced, in a first approxi-
mation, to considering only two neutrino species. This is

equivalent to the 2× 2 mixing matrix for the two heaviest
quark generations, mu(2 × 2) = mD†

ν (2 × 2), and some
indications of the values of the VEVs appearing in (73)
may be obtained from the experimental values of mc/mt

and the VCKM parameters.
The 2 × 2 part of the up-quark mass matrix for the

two heavier generations is of the following form [13] for
the F2, F4, f2, f5 basis:

mu(2 × 2) = mD†
ν (2 × 2)

=

(
φ4 ∆2∆5φ4

∆2∆5 1

)
λt(MGUT)〈h45〉.(74)

This implies that the (23) uL mixing angle, which con-
tributes to VCKM , is given by θuL(23) = ∆2∆5φ4, and the
(23) uR mixing angle is θuR(23) = ∆2∆5. The corresponding
mass eigenvalues are

m1,2
u ≈ 1

2

(
1 + φ4 ±

√
1 − 2φ4 + 4(∆2∆5)2φ4 + φ

2
4

)
,

(75)
so we see that the heavier eigenvalue is almost unity, where-
as the lighter is suppressed if φ4 � 1:

mc

mt
∼ φ4 × O(1). (76)

One should not be too concerned at this stage about the
compatibility of this equation with (69), since unknown
numerical factors remain to be calculated. More informa-
tion about the VEVs of the fields is provided by the (23)
element of VCKM . This also receives a contribution from
the (23) element of the down-quark mass matrix, which
was also found [13] to be of order ∆2∆5φ4. Up to con-
stants of order unity, which we do not keep track of in our
analysis of mass matrices, we conclude that

∆2∆5φ4 ≈ 0.044. (77)

We see from (76) that having φ4 large and ∆2∆5 small
will not give acceptable solutions. However, the choice of
large ∆2∆5 and smaller φ4 does lead to acceptable solu-
tions. For example, fixing φ4 ≈ 0.044/∆2∆5, we find for
∆2∆5 ≈ 0.8 that mc/mt = 0.018, and for ∆2∆5 ≈ 0.9
we find mc/mt = 0.008. However, it should also be noted
that the values of the acceptable field VEVs are sensitive
to the presence of order unity coefficients. In particular,
∆2∆5 can become smaller. For example, if the off-diagonal
elements in (74) happen to be multiplied by factors of two,
we find that, for ∆2∆5 = 0.47, mc/mt = 0.009, and for
∆2∆5 = 0.53, mc/mt = −0.009, whereas for ∆2∆5 = 0.5:
mc/mt ≈ 0.

This is why we assumed that∆2∆5 is large and φ4 � 1
in our earlier analysis of the charged-lepton mass matrix,
which then required φ3 = O(1). Analysis of the (13) entry
in VCKM , which is O(∆3∆5φ3), might then lead one to
suspect that ∆3 � 1. However, as can be seen from [13],
this would lead to too small a value for the Cabibbo angle.
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In fact, it is not necessary that ∆3 � 1, because, unlike
the (12) entry, the (13) entry in VCKM results from a dif-
ference between two terms of the same order that originate
from u- and d-quark mixing, and there could be a cancel-
lation between them, depending on the precise numerical
coefficients.

We have omitted from the above discussion the last
term in (73), which includes factors of ∆3 and φ3. We
have no strong reason to neglect this term, except for the
fact that it is of sixth order. Nevertheless, we assume for
simplicity that this and other mixing with F3 can be ne-
glected at a first approximation. Absent from the above
discussion has been any Dirac neutrino mass term involv-
ing f1. There is no such coupling to any of the F2,3,4 up
to sixth order, but there is such a coupling to φ1 in fourth
order,

F1f1h45φ1, (78)

which may lead to mixing between the ν1 component of
f1 and the singlet φ1, if F1 develops a VEV [32]. Since the
term (78) is only of the fourth order, we consider φ1 to be
the best candidate for the third νR state, rather than one
of the Fi.

This example serves to warn us that the expected re-
lation (70) may be too naive, the reason being that the
u quark is so light that some other effect, such as mixing
with additional heavy singlet states, may be important.

7.3 Heavy Majorana masses

We now discuss the heavy Majorana mass matrix for the
fields F2, F4, which we parametrize as:(

M M ′

M ′ M ′′

)
. (79)

As we now discuss, the heavy Majorana entries M,M ′ and
M ′′ are expected to be generated from higher-order non-
renormalizable terms. Their magnitudes play crucial rôles
in the mixing of the light neutrinos, as the previous simple
2 × 2 and 3 × 3 phenomenological analyses have shown.
We find candidate terms for the M,M ′ contributions at
seventh order. Up to this order, a complete catalogue of
the operators that could generate heavy Majorana neu-
trino mass terms involving the fields F2 and F4 is given
by:

WNR = F2F2(F 5F 5Φ2φ1 + F 5F 5φ3φ4 +

F 5F 5φ4φ3 + F 5F 5φ1φ2 +

F 5F 5φ45φ45Φ4 + F 5F 5φ
−φ

−
Φ4 +

F 5F 5φ
−φ

+
Φ4 + F 5F 5D5φ3D4 +

F 5F 5Φ2φ1Φ1 + F 5F 5Φ2φ1Φ3 +

F 5F 5Φ2φ2Φ4 + F 5F 5φ3φ3Φ4 +

F 5F 5φ3φ4Φ1 + F 5F 5φ3φ4Φ3 +

F 5F 5φ3φ4Φ5 + F 5F 5φ4φ3Φ1 +

F 5F 5φ4φ3Φ3 + F 5F 5φ4φ3Φ5 +

F 5F 5φ4φ4Φ4 + F 5F 5φ1φ1Φ4 +

F 5F 5φ1φ2Φ1 + F 5F 5φ1φ2Φ3) +

F4F4(F 5F 5φ1φ2 + F 5F 5φ3φ4 +

F 5F 5φ
−φ+Φ4 + F 5F 5D5φ3D4 +

F 5F 5φ1φ1Φ4 + F 5F 5φ1φ2Φ1 +

F 5F 5φ1φ2Φ2 + F 5F 5φ1φ2Φ3 +

F 5F 5φ2φ2Φ4 + F 5F 5φ3φ3Φ4 +

F 5F 5φ3φ4Φ1 + F 5F 5φ3φ4Φ2 +

F 5F 5φ3φ4Φ3 + F 5F 5φ3φ4Φ5 +

F 5F 5φ4φ4Φ4) +

F2F4F 5F 5∆2∆5φ3. (80)

Please note that we include at this stage some combina-
tions involving singlet fields which we had assumed in [13]
(see also the Appendix) to have zero VEVs. This is done
in order to develop a more general picture of the types of
terms that are allowed. However, we have dropped combi-
nations of the type D2

i , since such terms would not allow
for two light Higgses.

The only term in (80) that involves the combination
F2F4 is F2F4F 5F 5∆2∆5φ3. Previously, in [13], in which
we studied the implications of this model for the quark
mass matrices, we assumed that φ3 = 0. However, this
restriction may be avoided [32] by a different choice of flat
direction15. If we adopt the minimal modification of the
flat direction chosen in [13] that allows for a non-zero VEV
for φ3, none of the additional terms involving F4F4 sur-
vives. However, there is an effective term, F2F2F 5F 5φ4φ3,
that provides F2F2 mixing16. We therefore conclude that,
at seventh order, this model has:

M = F 5F 5φ4φ3, M ′ = F 5F 5∆2∆5φ3, M ′′ = 0. (81)

Clearly, the form of the heavy Majorana mass matrix de-
pends on the relative magnitudes of the VEVs of the∆2∆5
and φ4 field combinations, which we discussed earlier in
connection with the matrix mu = mD

ν .
Our discussion of the heavy Majorana mass matrix is

not yet complete, since we should also discuss possible
15 It is worth noting that there is more freedom in assigning
non-zero VEVs to the various singlets if one allows for addi-
tional phases, beyond those introduced in [13]. A modification
of the pattern of VEVs would entail a modified discussion of
the flatness conditions at higher order, but a complete analysis
goes beyond the scope of this paper.
16 We recall that the Higgs mass matrix mixes the pentaplets
h1,2,3,45 and their conjugate fields, and needs to have two mass-
less combinations. Keeping the rest of the field VEVs as in [13],
the inclusion of a non-zero VEV for φ3 gives a new contribu-
tion only when we include the f4 field, which also contains an
electroweak doublet. A coupling h45f4F 5φ

2
4φ2φ3 is generated

at seventh order. However, there are still two massless states
left in the 4 × 4 space of the hi,ij , hi,ij fields.
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mass terms involving φ1, our candidate for the third νR
state. At seventh order, the following are the only such
candidate Majorana mass terms we find:

φ1F4F 5φ31φ31φ4φ2 → M4φ, φ2
1∆2∆5φ23T2T5 → Mφφ.

(82)
The first of these terms mixes φ1 with F4, and the latter
is a diagonal Majorana mass term. Combining these with
(81), we find the following 3 × 3 heavy Majorana mass
matrix for the F2, F4, φ1 basis:

M M ′ 0
M ′ 0 M4φ

0 M4φ Mφφ


 . (83)

Since all of these terms arise at seventh order, and the
VEVs appearing in them are not very tightly constrained,
diagonalization of the heavy Majorana mass matrix may
well require large mixing angles, but these angles cannot
be predicted accurately. Nevertheless, it would seem to
be a general feature that the characteristic heavy Majo-
rana mass scale MN � Ms, since all the entries in (83)
are of high order, with several potentially small VEVs.
This makes the appearance of one or more neutrino masses
around 0.1 eV quite natural, as we discuss next.

7.4 Neutrino mass textures in flipped SU(5)

Before constructing the neutrino mass matrices, we first
recall the left-handed charged-lepton assignments moti-
vated earlier:

(eL, µL, τL) = (f5 − O(∆2∆5)f2, f2

+O(∆2∆5)f5, f1) .

The weak-interaction eigenstates for the light neutrinos
must have the same assignments:

νe → f5 − O(∆2∆5)f2, νµ → f2 + O(∆2∆5)f5

ντ → f1. (84)

However, it is convenient to work with the basis (f5, f2, f1),
which is related to (84) by the rotation

V m`L =


1 − 1

2 (∆2∆5)2 ∆2∆5 0
−∆2∆5 1 − 1

2 (∆2∆5)2 0
0 0 1


 . (85)

As for the massive right-handed neutrinos, the coupling
(78) means that ντR has to be assigned to φ1, since it is
the only field to which f1 couples at a significant level. In
view of the couplings (71, 73), we assign νµR to F4 and
νeR to F2.

With these choices of bases, mD
ν takes the form

mD
ν =


∆2∆5φ4 1 0

φ4 ∆2∆5 0
0 0 F1


 , (86)

and MνR is given by

MνR =


 F 5F 5φ4φ3 F 5F 5∆2∆5φ3 0
F 5F 5∆2∆5φ3 0 F 5Φ31Φ31φ4φ2

0 F 5Φ31Φ31φ4φ2 ∆2∆5Φ23T2T5


 .

(87)
The resulting meff is given by (9), and the neutrino mixing
angles in the weak-eigenstate basis (84) are given by (63).

Clearly, the forms of the mass matrices depend on the
various field VEVs. For these, we have some information
from analysis of the flat directions and the rest of the
fermion masses, but there is still some arbitrariness. For
example, in the cases of the decuplets that break the gauge
group down to the Standard Model, we know that the
VEVs should be ≈ MGUT/Ms. In weakly-coupled string
constructions, this ratio is ≈ 0.01. However, the strong-
coupling limit of M theory offers the possibility that the
GUT and the string scales can coincide, in which case the
VEVs could be of order unity.

What about the other fields? The analysis of quark
masses suggested that ∆2∆5 should be of order unity,
while φ4 should be suppressed. The analysis of flat di-
rections in [13] indicate that if φ

2
3 is large, as we have

suggested in order to get the correct me/mµ ratio, then
Φ31Φ23 is also large. The flatness conditions [13] relate
Φ31, Φ31 and φ2, and can be satisfied even if all the VEVs
are large, as long as Φ31Φ31 and Φ23Φ23 are not very close
to unity. Finally, we note that nothing yet fixes the value
of T2T5.

Despite these uncertainties, the following features of
the mass matrices are apparent: (i) the heavy Majorana
matrix MνR is likely to have many entries that may be of
comparable magnitudes; in particular, (ii) there are po-
tentially large off-diagonal entries that could yield large
νµ → ντ and/or νµ → νe mixing; (iii) the neutrino Dirac
matrix is not equivalent to mu, and (iv) is also a potential
source of large νµ → νe mixing; we recall (v) that charged-
lepton mixing is potentially significant; we note that, in
general, (vi) the mass matrices (86,87) correspond to the
mismatched mixing case of Sect. 5; and finally, we recall
(vii) that there is significant mixing of candidate νR states
with singlet fields.

A complete analysis of the available parameter space
goes beyond the scope of this paper, and would perhaps
involve placing more credence in the details of this model
than it deserves. Accordingly, we limit ourselves to some
general comments on the likelihood of mass degeneracies
relative to hierarchies in meff , and on the plausibility of
large mixing in the νµ → ντ and/or νµ → νe sectors.

To this end, we first consider the following simplified
forms for the matrices (68,74,83):

MνR =


M 0 0

0 0 M4φ

0 M4φ Mφφ


 and V m†

`L
mD
ν =


0 αsψ 0

0 αcψ 0
0 0 γ


 ,

(88)
for suitable α, ψ, where our approximations are to neglect
M ′ – but not to make any other a priori assumption about
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the relative magnitudes of entries in MνR – and to neglect
terms in V m†

`L
mD
ν that are O(φ4), again with no a priori

assumption about the relative magnitudes of other entries.
These are parametrized by α, γ and an angle ψ, and we
denote sinψ by sψ, etc. The first approximation could be
motivated if φ3 is negligible [13], and M is eventually gen-
erated by some other effect; as we shall see, the magnitude
of M is not essential for this simplified analysis. On the
other hand, its consistency would require F 5 to be quite
large, as could occur in the strong-coupling limit of M
theory, while the unknown combination T2T5 ∼ φ4.

The inputs in (88) yield the following effective light-
neutrino mass matrix in the weak interaction basis for the
neutrinos:

meff =




−Mφφα
2s2ψ

M2
4φ

−Mφφα
2sψcψ

M2
4φ

αγsψ
M4φ

−Mφφα
2sψcψ

M2
4φ

−Mφφα
2c2ψ

M2
4φ

αγcψ
M4φ

αγsψ
M4φ

αγcψ
M4φ

0


 . (89)

Transforming to the basis (cψνe−sψνµ), (sψνe+cψνµ),
ντ (which need not coincide with the flipped SU(5) basis),
we see that meff in (89) has the form:

meff =




0 0 0

0 −Mφφα
2

M2
4φ

αγ
M4φ

0 αγ
M4φ

0


 . (90)

Using the 2 × 2 analysis in Sect. 2, we therefore see that
the three mass eigenstates are

ν1 ≡ cψνe − sψνµ : m1 = 0, (91)

ν2 ≡ cη(sψνe + cψνµ) − sηντ :

m2 =
2γ2

Mφφ +
√
M2
φφ + 4M2

4φ(γ/α)2
, (92)

ν3 ≡ sη(sψνe + cψνµ) + cηντ :

m3 =
2γ2

Mφφ −
√
M2
φφ + 4M2

4φ(γ/α)2
, (93)

where

sin22η =
4(M4φγ/α)2

M2
φφ + 4(M4φγ/α)2

. (94)

These simple results equip us to answer some of the
questions raised by the phenomenological analysis of the
data.

We see that one neutrino is massless in this simpli-
fied picture, but we expect it to acquire a small mass
when some of the other mixing effects in (68,74,83) are
taken into account. The ratio |m3/m2| may be � 1 if
|M4φγ| � |Mφφα|, or ≈ 1 if |M4φγ| � |Mφφα|. However,
obtaining a large hierarchy |m3/m2| ∼ 10, as would be
required if m3 ∼ 10−3/2 eV and m2 ∼ 10−5/2 eV, seems

to require less fine-tuning than obtaining near-degeneracy;
(m2

3 −m2
2)/m

2
3 ∼ 1/100, as would be required if the neu-

trino masses were to be cosmologically significant: m2,3 ∼
1 eV. Moreover, any such degeneracy would be very sensi-
tive to higher-order corrections, and there is no apparent
mechanism for making ν1 approximately degenerate with
ν2,3, as would also be required in this scenario.

Large mixing appears naturally in the νµ → νe sec-
tor for generic values of ψ, but its magnitude is model-
dependent. In particular, there is the logical possibility
of a cancellation between the mixing in (V mL )† and mD

ν

that could suppress it significantly: sinψ � 1. Neverthe-
less, the large-angle MSW solution seems quite plausible.
Large mixing in the νµ → ντ sector is also quite generic.
The simplified parametrization above might indicate an
apparent conflict with a large hierarchy: |m3/m2| � 1.
However, following the discussion in Sect. 3, we expect
large mixing and a large hierarchy to be quite compati-
ble when the full parameter space of (68,74,83) is explored.
Moreover, we should also remember that the effective neu-
trino mixing angle may be amplified by renormalization-
group effects in the case of large tanβ, as discussed in
Sect. 4 and seen in Fig. 5, so we need not require that the
maximal mixing be present already at the GUT scale.

We now consider the complementary possibility, where
the field φ3 develops a large VEV. The larger φ3, the
smaller are mνµ and mνe with respect to mντ . At this
stage, we assume for simplicity that φ3 ≈ 1 and we de-
fine coefficients that keep track of the relation between
the various entries of MνR . Then we write MνR in (87) as

MνR ∝


 F 5F 5φ4 F 5F 5∆2∆5 0
F 5F 5∆2∆5 0 F 5φ4

0 F 5φ4 ∆2∆5Φ23T2T5




≡


 fy2 2xy2 0

2xy2 0 fy

0 fy tx


 , (95)

where∆2∆5 ≡ x, T2T5 ≡ t, φ4 ≡ f and F 5 ≡ y. In the last
matrix, the factor of 2 has been included in order to avoid
artificial subdeterminant cancellations (which are, in gen-
eral, absent once coefficients of order unity are properly
incorporated). For the Dirac mass matrix, as in the previ-
ous case, we have the possibility of cancellations between
the charged lepton and neutrino mixing matrices. To sim-
plify the presentation in terms of the mass matrices, we
describe two cases separately.

In the absence of a cancellation, the Dirac mass matrix
in the weak-eigenstate basis is of the form

V m†
`L

.mD
ν ≈


 1 −gx 0
gx 1 0
0 0 1




 fx 1 0

f x 0
0 0 y


 , (96)

where we have dropped terms of order x2 in (V`L)m†.
Then,
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meff ∝




−f4(−1 + g2)2x2 f4(−1 + g)x(1 + gx2) −f2(1 + (−2 + g)x2)y2

+ftx(1 + ...) +ftx2(1 + ...)

f4(−1 + g)x(1 + gx2) −f4(1 + gx2)2 f2x(1 + g(−1 + 2x2))y2

+ftx2(1 + ...) −ftx3(1 + ...)

−f2(1 + (−2 + g)x2)y2 f2x(1 + g(−1 + 2x2))y2 −4x2y4




(97)

while

sin2 2θ23 =
4f4(x − gx + 2gx3)2y4

(4f4(x − gx + 2gx3)2y4) + (f4(1 + gx2)2 + ftx3(3 + ...) − 4x2y4)
. (98)

meff ∝


 −2af2tx(−1 + x2) −ft(1 + x2)(−1 + x2) f2(−1 + x2)y2

−ft(1 + x2)(−1 + x2) ft(1 − 2x2)/x f2(−1 + x2)y2/x

f2(−1 + x2)y2 f2(−1 + x2)y2/x −x2y4


 , (100)

We see, therefore, that if φ4 ≈ F 5, F1, as would be ex-
pected in weak-coupling unification schemes, the entries
of meff are all of the same order of magnitude. In this case,
as we discussed in the previous phenomenological analysis,
large νµ → νe and νµ → ντ mixings are both generated,
and cancellations between the various terms can lead to
large hierarchies between the neutrino masses.

Suppose now that a cancellation between the charged
lepton and the neutrino mixing matrices takes place. In
this case, we write

V m`L =


 1 gx 0

−gx 1 0
0 0 1


 , (99)

where g ≈ (1−aφ4)/x2: this leads to (1,2) and (2,1) entries
in the Dirac mass matrix of the order of φ4. In this case [see
(100)], and we see a difference from the previous example,
in that now all the entries of the (1,2) sector are multiplied
by t, and therefore may be suppressed if T2T5 is small.
The entries for the (2,3) sector are similar to the previous
case, with the modification that the (2,2) entry can be
very small. Large (2,3) mixing is again generated for φ4 ≈
F 5, F1.

We conclude this section by commenting on the possi-
ble order of magnitude of neutrino masses in this model,
using (93) as our guide. The factor γ appearing in the nu-
merator and denominator is expected to be O(1) ×MW ,
since it comes from a third-order coupling. The same es-
timate applies to the factor α appearing in part of the de-
nominator. The factors M4φ,Mφφ that also appear there
originate from seventh-order couplings, and hence are ex-
pected to be considerably smaller, with a typical estimate
being O(10−4±1) × Ms. Taking Ms ∼ 1016 to 1018 GeV,
we might guess that Mφφ,M4φ ∼ 1013±2 GeV. Our final
estimate is therefore that

m3 ∼ 100±2 eV, (101)

which is consistent (allowing for our uncertainties) with
the indication provided by the Super-Kamiokande data
[1] that m2

3 ≥ 10−3 eV2.

We conclude that the flipped SU(5) model appears ca-
pable, allowing for its considerable uncertainties, of prov-
ing to be consistent with the magnitudes of the neutrino
masses and mixing angles suggested by experiment.

8 Conclusions

In this paper we have, from a purely phenomenological
point of view, analyzed the possible patterns of neutrino
masses and mixing compatible with the atmospheric and
solar neutrino deficits. In particular, we have emphasized
that large neutrino mixing, as suggested by the Super-
Kamiokande atmospheric neutrino data [1], does not nec-
essarily require near-degeneracy between a pair of neu-
trino masses. We have discussed possible patterns of 2×2
and 3 × 3 Dirac and massive Majorana mass matrices
that are compatible with these and MSW interpretations
of the solar neutrino data. We have also provided semi-
analytic formulae for renormalization-group effects, and
re-evaluated their impact on the light-neutrino mixing an-
gles, which may well be important. Equipped with this
phenomenological background, we have gone on to discuss
neutrino masses and mixing in general models with a U(1)
flavour symmetry, and in a realistic flipped SU(5) ×U(1)
model derived from string.

The discussion of this part of our paper serves to re-
inforce the message that, though the string selection rules
restrict the forms of terms that one may obtain from a spe-
cific string-derived model, it is nevertheless possible to ob-
tain realistic patterns of fermion masses and mixings. We
had demonstrated this previously for quarks and charged
leptons, and have extended that discussion to neutrinos in
this paper. In particular, we have shown that it is possible
to have contributions which lead to plausible hierarchical
magnitudes of neutrino masses, a large mixing angle that
could explain the atmospheric neutrino deficit, and either
the large- or the small-angle MSW solution to the solar
neutrino deficit.

The higher-dimensional operators that we obtain de-
pend only on the choice of string model, but the detailed
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Table 3. The chiral superfields are listed with their quantum numbers [14].
The Fi, f i, `c

i , as well as the hi, hij fields and the singlets are listed with
their SU(5) × U(1)′ × U(1)4 quantum numbers. Conjugate fields have op-
posite U(1)′ ×U(1)4 quantum numbers. The fields ∆i and Ti are tabulated
in terms of their U(1)′ × SO(10) × SO(6) × U(1)4 quantum numbers

F1(10, 1
2 , − 1

2 , 0, 0, 0) f1(5, − 3
2 , − 1

2 , 0, 0, 0) `c
1(1, 5

2 , − 1
2 , 0, 0, 0)

F2(10, 1
2 , 0, − 1

2 , 0, 0) f2(5, − 3
2 , 0, − 1

2 , 0, 0) `c
2(1, 5

2 , 0, − 1
2 , 0, 0)

F3(10, 1
2 , 0, 0, 1

2 , − 1
2 ) f3(5, − 3

2 , 0, 0, 1
2 , 1

2 ) `c
3(1, 5

2 , 0, 0, 1
2 , 1

2 )
F4(10, 1

2 , − 1
2 , 0, 0, 0) f4(5, 3

2 , 1
2 , 0, 0, 0) `

c
4(1, − 5

2 , 1
2 , 0, 0, 0)

F 5(10, − 1
2 , 0, 1

2 , 0, 0) f5(5, − 3
2 , 0, − 1

2 , 0, 0) `c
5(1, 5

2 , 0, − 1
2 , 0, 0)

h1(5, −1, 1, 0, 0, 0) h2(5, −1, 0, 1, 0, 0) h3(5, −1, 0, 0, 1, 0)
h45(5, −1, − 1

2 , − 1
2 , 0, 0)

φ45(1, 0, 1
2 , 1

2 , 1, 0) φ+(1, 0, 1
2 , − 1

2 , 0, 1) φ−(1, 0, 1
2 , − 1

2 , 0, −1)
Φ23(1, 0, 0, −1, 1, 0) Φ31(1, 0, 1, 0, −1, 0) Φ12(1, 0, −1, 1, 0, 0)
φi(1, 0, 1

2 , − 1
2 , 0, 0) Φi(1, 0, 0, 0, 0, 0)

∆1(0, 1, 6, 0, − 1
2 , 1

2 , 0) ∆2(0, 1, 6, − 1
2 , 0, 1

2 , 0) ∆3(0, 1, 6, − 1
2 , − 1

2 , 0, 1
2 )

∆4(0, 1, 6, 0, − 1
2 , 1

2 , 0) ∆5(0, 1, 6, 1
2 , 0, − 1

2 , 0)

T1(0, 10, 1, 0, − 1
2 , 1

2 , 0) T2(0, 10, 1, − 1
2 , 0, 1

2 , 0) T3(0, 10, 1, − 1
2 , − 1

2 , 0, 1
2 )

T4(0, 10, 1, 0, 1
2 , − 1

2 , 0) T5(0, 10, 1, − 1
2 , 0, 1

2 , 0)

forms of the mass matrices clearly depend on the choice of
flat direction. This introduces some ambiguity, and work
remains to be done to demonstrate that the choice made
in this paper remains valid to higher orders in the effec-
tive superpotential derived from the string model. Despite
this apparent freedom in the choice of VEVs, the room
for maneuvering in such a string-derived model is quite
restricted, and we find it interesting that it is nevertheless
possible to obtain a realistic scheme for fermion masses
and mixings and even obtain solutions with large neutrino
oscillations.

We conclude by stressing again some aspects of our
specific model analysis that might be of general interest to
model-builders. (i) Once outside the framework of SO(10)-
like models, there is no general expectation that the neu-
trino Dirac mass matrix should be equivalent to the u-
quark mass matrix, in particular because (ii) charged-
lepton mixing may also be significant, and different from
that of d-type quarks. Moreover, (iii) mixing in the heavy
Majorana mass matrix is in general mismatched relative to
the other mass matrices, leading to a generic expectation
of large mixing angles for the light neutrinos. Specifically,
this can occur because (iv) the effective νR states may
include gauge-singlet fields that are not related by GUT
symmetries to any Standard Model particles. Finally, we
note that (v), because the heavy Majorana mass matrix
elements typically arise from higher-order non-renormali-
zable terms, it is quite natural that the mass eigenvalues
be much smaller than Ms or MGUT, possibly with values
O(1013) GeV, as would be required to generate a light
neutrino mass O(0.1) eV.
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Appendix

In this appendix we tabulate for completeness the field as-
signment of the realistic flipped SU(5) string model [14],
as well as the basic conditions used in [13] to obtain con-
sistent flatness conditions and acceptable Higgs masses.

As can be seen, the matter and Higgs fields in this
string model carry additional charges under additional
U(1) symmetries [14]. There exist various singlet fields,
and hidden-sector matter fields which transform non-tri-
vially under the SU(4) × SO(10) gauge symmetry, some
as sextets under SU(4), namely ∆1,2,3,4,5, and some as
decuplets under SO(10), namely T1,2,3,4,5. There are also
quadruplets of the SU(4) hidden symmetry which possess
fractional charges. However, these are confined and will
not concern us further.

The usual flavour assignments of the light Standard
Model particles in this model are

f1 : u, τ, f2 : c, e/µ, f5 : t, µ/e

F2 : Q2, s, F3 : Q1, d, F4 : Q3, b

`c1 : τ , `c2 : e, `c5 : µ, (102)

up to mixing effects, which are discussed in more detail in
Sect. 7. We chose non-zero vacuum expectation values for
the following singlet and hidden-sector fields:
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Φ31, Φ31, Φ23, Φ23, φ2, φ3,4, φ
−, φ

+
, φ45, φ45, ∆2,3,5, T2,4,5.

(103)
The vacuum expectation values of the hidden-sector fields
must satisfy the additional constraints

T 2
3,4,5 = Ti · T4 = 0, ∆2

3,5 = 0, T 2
2 +∆2

2 = 0. (104)

For further discussion, see [13] and references therein.
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